Models Lecture #6

The distance ladder

The Cosmological Distance Ladder

They (appear to) move They have different apparent brightness They have different colors They change in brightness

 $\frac{D}{200,000 \text{ AU}} = \frac{\text{seconds}}{\alpha}$

$$\frac{\mathsf{D}}{\mathsf{pc}} = \frac{\mathsf{seconds}}{\alpha}$$

$$\frac{D}{pc} = \frac{seconds}{parallax}$$

star	parallax (")	distance (pc)
α Centauri	0.75	1.3
Barnard's star	0.5	2.0
Sirius	0.4	2.5
Altair	0.2	5.0

Let's think for a second of arc

$$oldsymbol{lpha}{oldsymbol{L}}$$

$$\alpha = \frac{2 \text{ km}}{D}$$
 seconds

α	D
4" 2" 1" 0.1" 0.01"	1/2 km 1 km 2 km 20 km 200 km
0"	infinity

They (appear to) move They have different apparent brightness They have different colors They change in brightness

LET THERE BE LIGHT!

Greeks classified (visible) stars into 6 classes, or magnitudes

Brightest stars were 1st magnitude Dimmest stars were 6th magnitude

Intensity of brightest stars = $100 \times dimmest$.

The luminosity of nearby stars?

Measure: intensity of light, I

Intensity depends on

- 1. Luminosity of source (property of source)
- 2. Distance to the source

Inverse-square law

$$I = \frac{L}{4\pi R^2}$$

parallax → distance

$$\frac{D}{pc} = \frac{seconds}{parallax}$$

$$I = \frac{L}{4\pi R^2}$$

Measured

star	parallax (")	distance (pc)	apparent magnitude	luminosity (solar)
α Centauri	0.75	1.3	0	1.5
Barnard's star	0.5	2.0	9.5	0.0005
Sirius	0.4	2.5	-1.5	25
Altair	0.2	5.0	8.0	10
Canopus	0.003	330	- 0.7	200,000
Arcturus	0.1	10	0	90
Betelgeuse	0.01	100	0.5	14,000

Our Sun ain't the brightest bulb in the box!

Intensity =
$$\frac{Luminosity}{4\pi R^2}$$

$$L_{SIRIUS} = 25 \times L_{SUN}$$

For stars we know distance to via parallax:

Measure Distance (R) → Know Luminosity
Measure Intensity

They (appear to) move
They have different apparent brightness
They have different colors
They change in brightness

COLORS OF THE RAINBOW:

ROYGBIV

46 bc

Hertzsprung-Russell Diagram

Hyades HR diagram

Schematic Hertzsprung-Russell Diagram

Distances to other clusters

- Construct H-R diagram for cluster
- Measure ∆m compared to HR diagram for Hyades
- Compute distance in terms of distance to Hyades
- How far can you go?
- Say most distant open observable cluster is Lastades

The Cosmological Distance Ladder

Main sequence stars are not extremely bright...
 we need brighter "standard candle"

Intensity =
$$\frac{Luminosity}{4\pi R^2}$$

They (appear to) move
They have different apparent brightness
They have different colors
They change in brightness

Stars Lyrae

RR Lyrae Stars

- Class named after a particular star: RR Lyrae
- Compared to the sun
 - half the mass
 - older than sun
 - hotter
 - expended hydrogen ... burning helium to carbon
 - pulsates
- Changes brightness with regular period of days
- Luminosity determined by size & temperature
 - for same temperature: larger → more luminous
 - for same size: hotter → more luminous
- Shrink → compressional heating → more luminous

Main sequence stars are not extremely bright...
 we need brighter "standard candle"

Intensity =
$$\frac{\text{Luminosity}}{4\pi R^2}$$

- RR Lyrae stars found in distant clusters we know the distance to via H-R fitting.
- RR Lyrae stars are identified because their light output changes regularly on a time scale of half to one day.
- They are brighter than the sun by about a factor of 100 and are <u>standard candles</u>. Can see farther away and use as standard candle.

The Cosmological Distance Ladder

Need brighter "standard candle"

Intensity =
$$\frac{\text{Luminosity}}{4\pi R^2}$$

- Other variable stars are brighter: Cepheid Stars (Polaris is a Cepheid)
- Cepheid stars are identified because their light output changes regularly on a time scale of weeks to months. They are very rare.
- They are brighter than the sun by about a factor of 10,000 but are <u>not</u> standard candles.

Cepheid Variable Stars

Henrietta Leavitt 1868 - 1921

Light curve of Delta Cephei

Cepheids as distance indicators

For cepheids of known distance

Measure apparent magnitude of the cepheids

$$I = \frac{L}{4\pi R^2} \rightarrow \operatorname{know} L$$

- Measure period of the cepheids
- Calibrate (if know period know L)

For cepheids of unknown distance

- Measure period....know \boldsymbol{L}
- Measure apparent magnitude

$$I = \frac{L}{4\pi R^2} \to \operatorname{know} R$$

The Cosmological 10 Mpc Distance Ladder 10 kpc few kpc ~100 pc (variability) Cepheids nearby stars 1 AU main sequence) (variability) RR Lyrae clusters parallax) (geometry) (geometry) Sun Moon (geometry) 80 clusters Earth

Large Magellanic Cloud 100 million stars 55 kpc distant

Milky Way Galaxy

MESSIER CATALOGUE

The composition of the universe

Hubble
Ultradeep
Field

10,000 here ——

50 thousand million over entire sky

A view of the universe, circa 1906 A.D.

Kapteyn Universe

Heber Curtis 1872 - 1942

Harlow Shapley 1885 - 1972

- 1. Rotation of M101
- 2. Variable stars
- 3. Stars or gas
- 4. Spatial distribution & velocity

M101

Adriaan van Maanen 1916

M101

- 1. Rotation of M101
- 2. Variable stars
- 3. Stars or gas
- 4. Spatial distribution & velocity

Supernova in M51

- 1. Rotation of M101
- 2. Variable stars
- 3. Stars or gas
- 4. Spatial distribution & velocity

- 1. Rotation of M101
- 2. Variable stars
- 3. Stars or gas
- 4. Spatial distribution & velocity

Edwin Hubble 1884 - 1953

University of Chicago 1909 National Champions

University of Chicago 1909 Big-10 Champions

Track Team

Two famous Rhodes Scholars:

Politics is for the moment; an equation is forever.

A. Einstein

100-inch Hooker Telescope on Mt. Wilson

Hubble's Hooker Chair

TIME

THE WEEKLY NEWSMAGAZINE

ASTRONOMER HUBBLE Will Palemae's 200 inch eye ser an exploding universe? (Science)

6-0ct 1923

Cepheid Variable Star in Galaxy M100

HST-WFPC2

Rédshift

$$t = \Omega t$$

c = velocity of wave $\Delta t = time difference$

 $\mathbf{t} = \mathbf{2} \Delta \mathbf{t}$

 λ = distance between successive wavecrests

$$tt = \Delta t$$

 $d = v \Delta t$

V

 $t = 2 \Delta t$

$$d = v \Delta t$$

V

 λ = distance between successive wavecrests

Doppler Shift

$$\lambda_0 = c\Delta t = \text{rest wavelength}$$

$$\lambda = c \Delta t \pm v \Delta t = detected wavelength$$

$$c \Delta t = \lambda_0 \Longrightarrow$$

$$\Delta t = \frac{\lambda_0}{c} \qquad \Rightarrow \qquad \lambda = \lambda_0 \pm \frac{\mathbf{v}}{c} \lambda_0$$

 $\lambda = \lambda_0 \pm v \Delta t$

$$\lambda = \lambda_0 \left(1 \pm \frac{\mathbf{V}}{c} \right) \begin{array}{c} + \to \text{ receding} & (\text{longer } \lambda) \\ - \to \text{ approaching (shorter } \lambda) \end{array}$$

Facts about light

1. Light is a wave

Nothing exists but atoms and empty space; everything else is opinion.

- Demokritos

Everything has been thought of before. The problem is to think of it again.

- Goethe

Facts about light

1. Light is a wave

2. The wavelength is quantized

Solar Spectrum 4300 - 4400 Angstroms

red shift

Edwin Hubble 1884 - 1953

A detected wavelength

velocity of light

$$\frac{\lambda}{\lambda_0} - 1 = \frac{\mathbf{v}}{c}$$

$$c = \frac{c}{c}$$

$$c = 3 \times 10^5 \text{ km s}^{-1}$$

$$(\lambda > \lambda_0)$$

Hubble's Discovery Paper - 1929

QUAKER OATMEAL®

Cinnamon & Spice

All Natural Flavors

ACTORFICTION S'CIENCE

The universe is shrinking and will soon be the size of a golf ball.

See other side for answer.

CONVENTIONAL DIRECTIONS

Empty packet into bowl.

Add 1/2 cup boiling water; stir.

MICROWAVE DIRECTIONS

Empty packet into microwaveable bowl.
Add 2/a cup water
or milk.
Microwave at HIGH about
1-2 minutes; stir.
Use care when removing
cereal from microwave;
bowl may be hot.

For thicker oatmeal decrease liquid; for thinner oatmeal increase liquid.

THE ANSWER

Fiction! Most stars and galaxies are moving away from the earth which means the universe is actually getting bigger.

©1991 The Quaker Oats Company PO. Box 9003, Chicago, IL 60650-9083

QUAKER OATMEAL®

With Real
Cinnamon
& Spice
All Natural Flavors

ACTORFICTION

Sir Isaac Newton discovered gravity by watching an apple fall.

See other side for answer.

CONVENTIONAL DIRECTIONS

Empty packet into bowl.

Add 1/2 cup boiling water; stir.

MICROWAVE DIRECTIONS

Empty packet into microwaveable bowl.
Add 2/3 cup water or milk.
Microwave at HIGH about 1-2 minutes; stir.
Use care when removing cereal from microwave; bowl may be hot.

For thicker oatmeal decrease liquid; for thinner oatmeal increase liquid.

THE ANSWER

Fact! Newton made his famous discovery as a young man but was unable to prove it until almost 20 years later.

©1991 The Quaker Oats Company PO. Box 9003, Chicago, IL 60650-9003

THE HUBBLE CONSTANT ? I WOULDN'T HAVE THOUGHT THAT WOULD EVER COME BETWEEN US!"

$$v = H_0 d$$
 $H_0 = Hubble's constant$

$$H_0 = 500 \text{ km s}^{-1} \text{ Mpc}^{-1}$$
 Hubble 1929
 $H_0 = 100 \text{ km s}^{-1} \text{ Mpc}^{-1}$ 1960s
 $H_0 = 55 \text{ km s}^{-1} \text{ Mpc}^{-1}$ 1970s
 $H_0 = 65 \text{ km s}^{-1} \text{ Mpc}^{-1}$ 1990s
 $H_0 = 72 \text{ km s}^{-1} \text{ Mpc}^{-1}$ 2001

Doppler Shift

 λ_0 = rest wavelength

 λ = detected wavelength

$$\lambda = \lambda_0 \left(1 \pm \frac{\mathbf{V}}{c} \right) \quad + \rightarrow \text{receding} \quad \text{(longer } \lambda\text{)} \\ - \rightarrow \text{approaching (shorter } \lambda\text{)}$$

$$v = H_0 d$$
 $H_0 = Hubble's constant$

Let's assume $H_0 = 100 \text{ km s}^{-1} \text{ Mpc}^{-1}$

$$v = 100 \frac{\text{km}}{\text{s}} \frac{d}{\text{Mpc}}$$

${f V}$	d
$100 \mathrm{km s^{-1}}$	1 Mpc
$1,000 \mathrm{km s^{-1}}$	10 Mpc
$10,000 \mathrm{km s^{-1}}$	100 Mpc
$100,000 \mathrm{km s^{-1}}$	1,000 Mpc

